
Appendix E

Structural Mechanics

Engineers working with design analysis encounter mathematical problems
on a daily basis. This appendix supports calculations used in this manual
and consolidates some of the most often used mathematical concepts that
are needed by engineers. Any force that causes an object to rotate is said to
contribute a moment to the object. This and other concepts about loads,
forces, reactions, and how to keep a body in equilibrium are discussed.

DEAD, LIVE, AND IMPACT LOADS

E-1. The dead load acting on a bridge is the weight of the permanent bridge
components such as stringers, decking, accessories, and hardware. Base dead-
load calculations on the dimensions of component members using the
following densities:

• Timber, 0.04 kips per cubic foot.

• Concrete, 0.15 kips per cubic foot.

• Steel, 0.49 kips per cubic foot.

The dead load of the accessories can be closely estimated as follows:

• Timber-deck bridges, 0.1 kips per linear foot.

• Concrete-deck bridges, 0.4 kips per linear foot.

E-2. Live loads consist of any nonpermanent loads (such as vehicles,
pedestrians, snow, ice, or wind) that are applied temporarily to a bridge.
Consider the wheeled and tracked effect of these loads on the bridge and
design the bridge for the worst case.

E-3. Impact loads are the forces exerted on a bridge as a result of the sudden
application or removal of live loads. When steel stringers are used, increase
the live load by 15 percent to account for the impact loading. Timber stringers
tend to absorb shock, so no adjustment is needed for impact loading.

STRESSES

E-4. Stress is an internal force, or reaction, that results within a member
when an external load acts on it. The loading condition (the position and
movement of the load) may create in a member one or more of the stresses
discussed below. Based on the material of the member, a limiting value can be
placed on the magnitude of these internal stresses. For design and analysis,
use the values in Appendixes C and D.
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TENSILE STRESS

E-5. The tension member in Figure E-1 could be a suspension bridge cable or
a truss component. As the member is being pulled, internal tensile stresses
are formed as a reaction to the external loads. Compute the tensile stress as
follows:

(E-1)

where—

fT = tensile stress in the member, in ksi
T = total tension, in kips
A = cross-sectional area of the member, in square inches

COMPRESSIVE STRESS

E-6. If a bridge member is loaded compressively (as in the top chord of a truss
bridge), internal compressive stresses are formed as a reaction to the external
loads (Figure E-2). Compute the compressive stress as follows:

(E-2)

where—

fa = axial compressive stress in the member, in ksi
C = load weight, in kips
A = cross-sectional area of the member, in square inches

Figure E-1. Tension Member
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LEGEND:
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BEARING STRESS

E-7. When stringers rest on a cap or sill, bearing stresses are introduced into
both members at the point of contact (Figure E-3). Because of the large
difference in allowable stresses between steel and timber, use bearing plates
to increase the contact area and lower the bearing stress in timber. Compute
the bearing stress as follows:

(E-3)

where—

fB = bearing stress in the member, in ksi
F = total bearing load, in kips
A = cross-sectional area of the member resisting shear, in square inches

Figure E-2. Compression Member

Figure E-3. Bearing Members
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LEGEND:
A = cross-sectional area of the

member resisting shear
F = total bearing load
fB = bearing stress in the member
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SHEAR STRESS

E-8. Shear forces act very much like a pair of scissors cutting a piece of paper.
When forces of equal magnitude and opposite direction act on a member,
internal shear forces are generated as a reaction to the external loads
(Figure E-4). Shear failures in stringers usually occur close to the supports in
members that are less than 20 feet long. Compute shear stress as follows:

(E-4)

where—

fv = shear stress in the member, in ksi
V = total shear forces, in kips
A = area of contact, in square inches

MOMENT STRESS

E-9. Moment is the tendency of a body to rotate about an axis as a result of a
force acting over a lever arm. Using a wrench to turn a bolt is a good example
of moment. The longer the wrench, the less effort that is required to turn the
bolt. Internal moment stresses are generated when members bend (such as
when a stringer bends under the load of a vehicle). As shown in Figure E-5,
compressive and tensile forces are generated inside the stringer as a result of
an applied moment.

E-10. Section modulous is the property that measures the beam’s ability to
resist bending. Although expressed in units of volume, section modulus
functions as an index of the member’s size, shape, and orientation with

Figure E-4. Shear Stress
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respect to the load. For example, of the two timber orientations shown in
Figure E-6, page E-6, the one to the left results in less deflection. This
orientation is stronger and distributes the stress better because the
compressive and tensile stresses generated by the moment in the beam are
farther away from each other. Consequently, the section modulus of the
stringer to the left is greater than the section modulus of the stringerto the
right.

• Compute the bending stress as follows:

(E-5)

where—

fb = bending stress in the member, in ksi
M = total moment in the member, in kip-feet
S = section modulus of the member, in cubic inches

• Compute the section modulus for rectangular beams as follows:

(E-6)

where—

S = section modulus of the member, in cubic inches
b = member width, in inches
d = member depth, in inches

Figure E-5. Moment (Bending Stress)
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STATIC EQUILIBRIUM

E-11. If a body is at rest under the action of forces, it is said to be in
equilibrium. To keep a body in equilibrium, the following three conditions
must be met:

• The algebraic sum of all forces in a horizontal direction must equal
zero (ΣFH = 0). The forces acting to the right are considered positive
and the forces acting to the left are considered negative.

• The algebraic sum of all forces in a vertical direction must equal zero
(ΣFv= 0). The forces acting upward are considered positive and the
forces acting downward are considered negative.

• The algebraic sum of all moments about any point must equal zero
(ΣM = 0). The moments acting clockwise are considered positive the
moments acting counterclockwise are considered negative.

E-12. These three conditions of static equilibrium are useful in analyzing the
loading of structural members in a fixed bridge. For example, Figure E-7
shows a simply supported stringer in equilibrium with a 10-kip load acting
vertically at midspan. To design the supports, use the three conditions for
equilibrium to determine the reactions at Points A and B. For this example,
ignore the dead-load effects of the stringer.

E-13. There are no horizontal forces, so the value for ∑FH is zero. Since the
stringer is in equilibrium, the value for ∑Fv is also zero. The values for the
reactions at Points A and B are unknown. However, even with two unknowns,
the following equation must be true:

(E-7)

Figure E-6. Stringer Orientations for Section Modulus
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LEGEND:
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d = depth
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where—

∑Fv= total vertical forces on the stringer, in kips
RA = reaction at Point A, in kips
P = applied load, in kips
RB = reaction at Point B, in kips

E-14. The moments about any point must also equal zero. The first step in
summing the moments is to choose the point around which to sum the
moments (the assumed point of rotation). The point of rotation can be
anywhere on or off the beam, but it should eliminate one of the unknowns
from the summation of moments equation.

E-15. Start at the left support (Point A) and sum all the moments caused by
all the forces acting on the beam. The moment caused by a force equals the
load multiplied by the perpendicular distance from the force’s line of action to
the point of rotation. Since all the forces acting on the beam are vertical, find
the horizontal distance from the point at which the load acts to Point A. Sum
all of the forces about Point A as follows:

(E-8)

where—

∑MA = total moment about the point of rotation, in kip-feet
RA = vertical reaction at Point A, in kips
P = applied load, in kips
x = distance from Point A to the load, in feet
RB = vertical reaction at Point B, in kips
L = span length, in feet

Figure E-7. Static Equilibrium

P = 10 kips10′

Point A Point B

RA RB

LEGEND:
P = force (applied load)
RA = reaction at Point A
RB = reaction at Point B

ΣMA RA 0( ) Px RBL+ + RA 0( ) 10 10( ) -RB 20( )[ ]+ += =
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E-16. Every force that acts on the beam must be included in the summation.
The value for RA(0) equals zero, so the unknown RA drops out of the equation
and only one unknown is left. With only one unknown, compute the reaction
at Point B as follows:

(E-9)

where—

RB = vertical reaction at Point B, in kips

E-17. With a value for the reaction at Point B, find the value for the reaction
at Point A as follows:

(E-10)

where—

RA = vertical reaction at Point A, in kips

E-18. If a force is applied at the midspan, the reactions at the ends should
equal one-half the force and be opposite in direction. Providing values for the
shear equation will prove this.

(E-11)

where—

∑Fv = total vertical forces on the stringer, in kips
RA = vertical reaction at Point A, in kips
P = applied load, in kips
RB = vertical reaction at Point B, in kips

E-19. By knowing the values of RA and RB, all of the external forces acting on
the beam are known. The internal reactions caused by the inside of the beam
due to the external forces is determined next.

INTERNAL REACTIONS

E-20. To span a gap, a beam must remain rigid to keep from bending and
falling into the gap (unlike a cable which bends and falls). The force that
prevents a beam from bending is called the internal moment force. The beam
must also have internal shear forces or it will not be able to resist cutting
forces acting on it. As the beam must be rigid enough to span a gap, it must be
in static equilibrium both internally and externally. The equilibrium
equations apply both to the beam as a whole or to any portion of the beam.

E-21. Internal shear and moment act as a couple—two equal forces acting in
opposite directions—as illustrated in the free-body diagrams in Figure E-8. In
shear and moment calculations, always assume a positive couple. Then, if the

10 10( ) RB20– 0=

RB
10 10( )

20
----------------- 5= =

RA 10 5+– 0=

RA 10 5– 5= =

ΣFv RA P RB+– 5 10 5+– 0= = =
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assumptions are correct, the calculations will show positive shear or moment.
If the assumptions are incorrect, the calculations will show negative shear or
moment. If each shear-and-moment couple used the same negative and
positive designation as those for the forces in static equilibrium, each couple
would show both positive and negative forces. For this reason, use the sign
conventions shown in the legend for Figure E-8. To determine the internal
shear and moment values, analyze either of the free-body diagrams
(Figure E-8) as if each were a separate beam with two unknown forces acting
on the ends.

INTERNAL SHEAR FORCE

E-22. To determine the internal shear force, set the sum of the total vertical
forces equal to zero. In Figure E-8 then, the only forces acting on the beam are
the 5-kip reaction at Point A and the internal shear force. To work out the
units correctly, always analyze the free-body diagram to the left of the point of
interest. Begin at the far left of the diagram and work to the shear at the point
of interest (Figure E-9, page E-10) using the following equation:

(E-12)

Figure E-8. Internal Shear and Moment Reactions
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LEGEND:

X = perpendicular distance
K = kips
RA = reaction at Point A
RB = reaction at Point B
Vi = internal shear

ΣFV RA Vi– 5 Vi– 0= = =
Structural Mechanics E-9



FM 3-34.343
where—

∑FV = total shear, in kips
RA = reaction at Point A, in kips
Vi = internal shear of the member, in kips

INTERNAL MOMENT

E-23. To find the internal moment, sum the moments of all the forces to the
left of the point of interest (Figure E-9). The best assumed point of rotation is
at the center of the point of interest. Begin at the far left of the diagram and
work to the moment at the point of interest (Figure E-10) using the following
equation:

(E-13)

Mi = 5x

where—

∑M = total moment in the member, in kip-feet
RA = reaction at Point A, in kips
x = distance from the rotation point (Point A) to the point of interest, in feet
Vi = internal shear at the point of interest, in kips
Mi = internal moment in the member, in kip-feet

E-24. Although the internal moment equals the reaction at Point A times the
distance from the point of rotation to the point of interest, the value of the
internal moment is not multiplied by a distance. This is because it is a
moment force, not a vertical force. Instead, it is just given the proper sign and
added to the equation.

SHEAR AND MOMENT DIAGRAMS

E-25. A convenient way to portray the internal shear and moment due to
external forces at any section of a beam is to construct diagrams. The best way
to illustrate shear and moment diagrams is by the two examples discussed
below.

Figure E-9. Internal Shear Force

ΣFV 5 kips Vi– 0 Vi 5 kips=→= =

Vi

5 kips

LEGEND:
FV = total shear
Vi = internal shear

ΣM RAx Vi 0( ) Mi–( )–+ 5x 50 Mi–+ 0= = =
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EXAMPLE ONE

E-26. For shear and moment diagrams, start with a diagram of the beam. For
this example, Figure E-11 shows a beam with two concentrated loads acting
on it.

Shear Diagram

E-27. A shear diagram always begins and ends with the shear value equal to
zero. The first step in drawing shear diagrams is to determine the support
reactions due to the applied loads (use the conditions of static equilibrium).
Next, draw a baseline directly below the beam diagram and to the same
horizontal scale (Figure E-12, page E-12). This line represents the horizontal
axis where the value of shear equals zero. Draw light vertical lines at the ends
of the baseline to mark the beginning and end of the diagram. The key
locations are to the immediate right and left of any load or reaction. Find the
internal shear of the key locations (listed in equation E-14) in the beam from
the reaction at Point A (RA).

Figure E-10. Internal Moment

Figure E-11. Internal Moment for Example One
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LEGEND:
K = kips
Mi = internal moment in

the member
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10 K 20 K
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Point DPoint A Point B Point C

RA = 17.5 K RB = 12.5 K

LEGEND:
K = kips
RA = reaction at Point A
RB = reaction at Point B
Structural Mechanics E-11



FM 3-34.343
(E-14)

where—

VA = internal shear at Point A
RA = reaction at Point A, in kips
VB1 = internal shear just to the left of Point B
VB2 = internal shear just to the right of Point B
VC1 = internal shear just to the left of Point C
VC2 = internal shear just to the right of Point C
VD = internal shear at Point D

E-28. Plot the shear values on the diagram as shown in Figure E-12. All
values above the line are positive and those values below the line are negative.
As the diagram shows, the internal shear remains constant between applied
loads. Internal shear only changes at points where the load is applied. The
shear value for the beam equals the reactions in the supports at the ends of
the beam.

Figure E-12. Shear Diagram for Example One
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LEGEND:
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RA = reaction at Point A
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V = internal shear
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Moment Diagram

E-29. Begin the moment diagram by drawing a baseline directly below the
shear diagram and to the same horizontal scale (Figure E-13). The baseline is
the reference line where the moment equals zero.

Figure E-13. Moment Diagram for Example One
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E-30. The key points for moment are at the points of the applied loads (Points
A, B, C, and D in the diagram). To find the values for internal moment at the
key points, start at Point A and work to the right, summing all of the
moments (listed in equation E-15) to the left of the point of interest. A moment
is a force times the perpendicular distance between the line of action of the
force and the point at which moments are summed.

(E-15)

where—

MA = moment at Point A
MB = moment at Point B
MC = moment at Point C
MD = moment at Point D

E-31. Plot the values for internal moment as shown in Figure E-13,
page E-13. As the diagram shows, maximum shear is at the ends of the beam
and maximum moment is at the center of the beam. The shear and moment
anywhere along the beam can be determined from this diagram.

EXAMPLE TWO

E-32. Figure E-14 shows a diagram for a uniformly loaded beam. A uniform
load includes the weights of the beam, bridge deck, and snow or ice loads that
are applied evenly along the length of a beam. Tracked vehicles also distribute
loads along the length of the span. Uniformly distributed loads are expressed
in an amount of loading per foot of span (in kips).

Figure E-14. Uniform Load

MA 17.5 0( ) 0= =

MB 17.5 10( ) 10 0( )– 175 kip-feet= =

MC 17.5 20( ) 10 10( )– 20 0( )– 250 kip-feet= =

MD 17.5 40( ) 10 30( )– 20 20( ) 12.5 0( )+– 0= =

W = 2 kip-feet

20′
RBRA

LEGEND:
RA = reaction at Point A
RB = reaction at Point B
W = uniform load on the span
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External Forces

E-33. The first step in drawing shear and moment diagrams is finding the
external reactions at the supports. The total vertical forces and the total
moments will both equal zero. The vertical forces acting in an upward
direction are the unknown reactions at the supports. The vertical forces acting
in a downward direction are the uniformly distributed load. To determine the
total load acting downward on the span, multiply the uniformly distributed
load by the span length. Compute as follows:

(E-16)

where—

∑FV = algebraic sum of all the vertical forces
RA = reaction at Point A, in kips
w = uniform load on the span, in kpf
L = span length, in feet
RB = reaction at Point B, in kips

E-34. Since the equation has two unknowns, use the condition for moment in
equilibrium. To determine the moment caused by the uniform load, convert
the load to an equivalent concentrated load. The equivalent concentrated load
is equal to the uniform load multiplied by the span length. It is positioned at
the midspan (Figure E-15).

E-35. To get rid of one of the unknowns in equation E-8, sum the moments
about one of the supports (Point A or B). Compute as follows:

• For this example, start at the far left of the diagram for the
concentrated load and sum the moments about Point A.

(E-17)

where—

∑MA= total moment about Point A, in kips

Figure E-15. Uniform to Concentrated Load for Example Two

ΣFV RA wL RB+ + RA 2 20( )–[ ] RB+ + 0= = =

W = 2 kip-feet

20′

2 x 20 = 40 kip-feet

10′ 10′

LEGEND:
W= uniform load on the span

=

ΣMA RA 0( ) Px RBL+ + RA 0( ) 40 10( ) RB– 20( )[ ]+ + 0= = =
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RA = reaction at Point A, in kips
P = concentrated load, in kips
x = distance from the point of rotation to the point of interest, in feet
RB = reaction at Point B, in kips
L = span length, in feet

• To solve for the value of the reaction at Point B, use equation E-9.

(E-18)

where—

RB = reaction at Point B, in kips

• With a value for the reaction at Point B, find the value for the reaction
at Point A.

(E-19)

where—

RA = reaction at Point A, in kips

Shear Diagram

E-36. Figure E-16 shows a uniformly loaded beam. Calculate for shear as
follows:

• To compute the internal shear of the beam, start at the far left and
sum all of the vertical forces to the point of interest (Figure E-17) as
follows:

(E-20)

where—

∑FV = total shear about Point A, in kips
RA = reaction at Point A, in kips
W = applied load, in kpf
x = some distance, in feet
Vi = internal shear, in kips

• To find the value for internal shear, substitute varying values for
distance in the following equation:

(E-21)

400 RB20– 0=

RB
400
20

--------- 20 kips= =

RA 40 20+– 0=

RA 40 20– 20 kips= =

ΣFV RA Wx– Vi– 20 2x– Vi– 0= = =

Vi RA Wx–=

20 2 5( )– 10 kips==
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where—

Vi = internal shear, in kips
RA = reaction at Point A, in kips
W = applied load, in kpf
x = some distance, in feet

Figure E-16. Beam Diagram for Example Two

Figure E-17. Sum Forces to Left of the Cut
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LEGEND:
MX = moment
VX = shear
X = perpendicular distance
K = kips
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E-37. Analyzing the equation algebraically will show that internal shear is a
linear function of the distance from the support. Plotting the results of the
equation gives a straight line that starts at 20, for a length value equal to 0,
and ends at -20, for a length value equal to 20 (Figure E-18).

Moment Diagram

E-38. Begin the moment diagram by deriving a general equation for internal
moment at any point. To do this, pretend to cut the beam at an unknown
distance from the left support. Sum all of the moments about the cut point.
Then, convert the portion of the uniformly distributed load acting on the span
to the left of the cut into an equivalent concentrated load (Figure E-19).

• Compute the internal moment by summing the moments about
Point D for all the forces acting to the left:

(E-22)

where—

∑Md = total moment at the point of interest, in kip-feet
RA = reaction at Point A, in kips
x = distance from the point of rotation to the point of interest, in

feet
Vi = internal shear at the point of interest, in kips
Mi = internal moment at the point of interest, in kip-feet

Figure E-18. Shear Diagram for Example Two
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LEGEND:
V = shear
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• Compute the moment at the point of interest as follows:

(E-23)

where—

Mi = internal moment at the point of interest, in kip-feet
RA = reaction at Point A, in kips
x = distance from the point of rotation to the point of interest, in feet

• Find the value for internal moment by substituting varying values for
distance into equation E-22 and plotting the results on a moment
diagram as shown in Figure E-20, page E-20.

SHEAR- AND MOMENT-DIAGRAM CHARACTERISTICS

E-39. Figure E-21, pages E-21 through E-26, shows shear and moment
diagrams and their related equations for specific loading conditions.

Figure E-19. Uniform to Concentrated Load

Mi RAx x
2–=

X X/2 X/2VX

MX

2 kip-feet 2(X) kips

VX

LEGEND:
MX = moment
VX = shear
X = distance
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Figure E-20. Moment Diagram for Example Two
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LEGEND:
M = moment
RA = reaction at Point A
RB = reaction at Point B
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75 75
100

M = 0 M = 0 kip-feet

Moment Diagram
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1. Simple beam—uniformly distributed load.

LEGEND:
E = modulus of elasticity V = shear
l = span length w = uniform load on the span
M = moment x = distance
R = reaction

2. Simple beam—load increasing uniformly to one end.

LEGEND:
E = modulus of elasticity V = shear
l = span length V1 = shear at Point 1
M = moment V2 = shear at Point 2
R1 = reaction at Point 1 W = applied load
R2 = reaction at Point 2 x = distance

Figure E-21. Shear and Moment Diagrams
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3. Simple beam—load increasing uniformly to center.

LEGEND:
E = modulus of elasticity V = shear
l = span length V1 = shear at Point 1
M = moment V2 = shear at Point 2
R1 = reaction at Point 1 W = applied load
R2 = reaction at Point 2 x = distance

4. Simple beam—uniform load partially distributed.

LEGEND:
a = distance R2 = reaction at Point 2
b = distance V1 = shear at Point 1
c = distance V2 = shear at Point 2
l = span length w = uniform load on the span
M = moment x = distance
R1 = reaction at Point 1

Figure E-21. Shear and Moment Diagrams (continued)
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5. Simple beam—uniform load partially distributed at one end.

LEGEND:
a = distance R1 = reaction at Point 1 V2 = shear at Point 2
E = modulus of elasticity R2 = reaction at Point 2 w = uniform load on the span
l = span length V1 = shear at Point 1 x = distance
M = moment

6. Simple beam—uniform load partially distributed at each end.

LEGEND:
a = distance R1 = reaction at Point 1 V2 = shear at Point 2
b = distance R2 = reaction at Point 2 w1 = uniform load at Point 1
c = distance V = shear w2 = uniform load at Point 2
l = span length V1 = shear at Point 1 x = distance
M = moment

Figure E-21. Shear and Moment Diagrams (continued)
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7. Simple beam—concentrated load at center.

LEGEND:
E = modulus of elasticity R = reaction
l = span length V = shear
M = moment x = distance
P = concentrated load

8. Simple beam—concentrated load at any point.

LEGEND:
E = modulus of elasticity R2 = reaction at Point 2
l = span length V1 = shear at Point 1
M = moment V2 = shear at Point 2
P = concentrated load x = distance
R1 = reaction at Point 1

Figure E-21. Shear and Moment Diagrams (continued)
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9. Simple beam—two equal concentrated loads symmetrically placed.

LEGEND:
a = distance P = concentrated load
E = modulus of elasticity R = reaction
l = span length V = shear
M = moment x = distance

10. Simple beam—two equal concentrated loads unsymmetrically placed.

LEGEND:
a = distance M1 = moment at Point 1 R2 = reaction at Point 2
b = distance M2 = moment at Point 2 V1 = shear at Point 1
l = span length P = concentrated load V2 = shear at Point 2
M = moment R1 = reaction at Point 1 x = distance

Figure E-21. Shear and Moment Diagrams (continued)
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11. Simple beam—two unequal concentrated loads unsymmetrically placed.

LEGEND:
a = distance P1 = concentrated load at Point 1 V2 = shear at Point 2
b = distance P2 = concentrated load at Point 2 x = distance
l = span length R1 = reaction at Point 1
M1 = moment at Point 1 R2 = reaction at Point 2
M2 = moment at Point 2 V1 = shear at Point 1

12. Beam fixed at one end, supported at other—uniformly distributed load.

LEGEND:
E = modulus of elasticity R2 = reaction at Point 2
l = span length V1 = shear at Point 1
M = moment V2 = shear at Point 2
M1 = moment at Point 1 w = uniform load on the span
R1 = reaction at Point 1 x = distance

Figure E-21. Shear and Moment Diagrams (continued)
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